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Co-operative two-channel Kondo effect
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Received 20 February 1998

Abstract. We discuss how the properties of a single-channel Kondo lattice model are modified
by additional screening channels. Contrary to current wisdom, additional screening channels
appear to constitute a relevant perturbation which destabilizes the Fermi liquid. When a heavy
Fermi surface develops, it generates zero modes for Kondo singlets to fluctuate between screening
channels of different symmetry, producing a divergent composite pair susceptibility. Additional
screening channels couple to these divergent fluctuations, promoting an instability into a state
with long-range composite order.

A puzzling question that arises in trying to understand heavy-fermion superconductors is how
the localized moments seen in high temperature properties participate in the pair condensate
[1]. In these systems a significant fraction of the entropy associated with the local moments
appears to be involved with the superconducting condensation process: for UBe13, the spin-
condensation entropy is about 0.2kB ln 2 per spin [2]. The concept of ‘composite pairing’,
where a Cooper pair and local moment form a bound-state combination that collectively
condenses, may provide a way of understanding this large spin-condensation entropy [3–5].
Recent studies of the one-dimensional Kondo lattice at strong coupling [6] and the infinite-
dimensional two-channel Kondo lattice have both given indication of a composite pairing
instability [7].

In this letter we discuss how the properties of a single-channel Kondo lattice model for
heavy fermion systems are modified by coupling to additional screening channels. Current
wisdom, based on the naive extrapolation from single impurity models [8, 9], regards these
additional couplings to be irrelevant. We shall show that an entirely different state of
affairs arises in a two-channel Kondo lattice where the scattering channels of different
local symmetry are obliged to share a single Fermi sea. This allows for the possibility
of constructiveinterference between the two channels which drives the development of
composite order.

Consider a sea of conduction electrons coupled to anN -site lattice of spin-12 local
moments via two channels:

H = H0+
∑
j

{
J1ψ

†
1jσψ1j + J2ψ

†
2jσψ2j

}
· Sj (1)

whereH0 =
∑
εkc
†
kσ ckσ describes a single electron band andψ†0j = (ψ

†
0j↑, ψ

†
0j↓) is a

two-component spinor

ψ
†
0j = N−

1
2

∑
k

80kc
†
ke−ik·Rj (0 = 1, 2) (2)
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that creates an electron at sitej in one of two orthogonal Wannier states, with form factor
80k. We are motivated to include a weak second-channel coupling into a Kondo lattice
model by the observation that interactions in the conduction generally cause the spin-
exchange to spill over from the primary (f-) channel into a weaker, secondary screening
channel [10, 11]. We shall also introduce a ‘control’ model (II), where

H
(II)

0 =
∑
k0σ

εkψ
†
0kσψ0kσ (3)

simply describes a band of electrons carrying a conserved channel quantum number
0 = 1, 2. In the control electrons in different channels do not mix, and the absence of
a composite pairing instability in this model provides confirmation that composite pairing
effects are a consequence of channel interference.

To examine the effect of second-channel couplings, we introduce the composite operator

3 =
∑
j

−iψ†1jσσ2ψ
†
2j · Sj (4)

which transfers singlets between channels by simultaneously adding a triplet and flipping
the local moment. We now show that channel interference causes the susceptibility of this
composite operator to diverge in a Fermi liquid ground-state of channel one.

SupposeJ2� J1 so that a Kondo effect develops in channel one. At low energies the
operator(Sj · σαβ)ψ1β then behaves as a single bound-state fermion, represented by the
contraction

(
| |
Sj · σαβ)ψ1β(j)= zfjα (5)

wherez is the amplitude for bound-state formation. Hybridization between these composite
bound-states and conduction electrons forms the heavy-fermion quasiparticles, with energy
Ek and an enlarged Fermi surface whose enclosed volume counts both conduction and
composite f-electrons [12–14].

By applying this contraction procedure we see that the action of the composite operator
3 on the heavy-fermion ground-statecreates a pair:

3|8〉 = −i
∑
j

| |

Sj · (ψ†1j σσ2ψ
†
2j )|8〉

= z
∑
k,σ

σψ
†
2kσ f

†
−k−σ |8〉. (6)

In the control model,ψ†2k and f †−k are light and heavy electrons on different Fermi
surfaces. The mismatch between the decoupled Fermi surfaces for channel one and
two ensures that the excitation energyεk + Ek is always finite. By contrast, in the
physical model,3 creates a pair of heavy quasiparticles on asingle commonFermi surface.
To see this explicitly we expand bothfk and ψ2k = 82kck in terms of quasiparticle
operatorsak = cosδkck + sinδkfk. Near the Fermi surface, scattering is resonant, so
cosδkF ∼ 1, whereas sinδkF ∝ 81k reflects the symmetry of the primary screening channel.
Transforming to quasiparticle operators thus introduces a factor cos(δk) sin(δk) ∼ 81k into
the sum, so that near the Fermi surface,

3̂ ∝
∑
k,σ

σ 81−k82ka
†
kσ a

†
−k−σ . (7)

This relation describes the decomposition of the composite pair operator in terms of the
low-lying quasiparticles. Notice that the operator takes the form of an interference between
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(I) (II)
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Figure 1. Action of composite operator on heavy Fermi liquid creates: (I) a pair of heavy
fermions (channel interference) and (II) a heavy and light electron (channel conservation).
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Figure 2. Conjectured renormalization group flows for the co-operative two-channel Kondo
effect. The Fermi liquid formed in channel one or two is unstable to a common two-channel
state with composite order.

the two channels, and furthermore, that the two form factors must have the same parity,
or the composite operator vanishes on the Fermi surface. Since the excitation energy, 2Ek
vanishes on the heavy Fermi surface, it follows that there are now a large number of zero
modes for the transfer of singlets between channels.

It follows that composite pair susceptibilityχ3 must contain a singular term, directly
proportional to the anisotropic pair susceptibility of the heavy quasiparticles

χ3 ∝
∑
k

tanh

[
βEkλ

2

]
(81k82k)

2

2Ek
∝ ln

[
TK1

T

]
(8)

whereTK1 is the Kondo temperature for channel one. Any finiteJ2 will polarize the transfer
of singlets into channel two, thereby couplingJ2 to this divergent susceptibility. This will
causeJ2 to scale to strong coupling. A similar conclusion will hold whenJ2 is large and
J1 is small. The simplest way to connect up the renormalization flows in the vicinity of
the strong-coupling Fermi liquid fixed points, with the flow away from the weak-coupling
fixed point, is by hypothesizing the presence of a new attractive Kondo lattice fixed point
that is common to both channels (figure 2).

The main purpose of this paper is to present a simple mean-field realization of this
hypothetical two-channel lattice fixed point. We shall show that within our mean-field
theory, the BCS-like instability present about the Fermi liquid phase of channel one or
channel two leads to a common superconducting phase. One of its distinct features is the
development of off-diagonal composite order

〈3̂(x)〉 6= 0. (9)

This type of order involves the explicit participation of two screening channels and the
local moments in the pair condensate. To explore the nature of this new phase, we present
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a simple extension of the existing mean-field theory of the Kondo lattice. If we employ
the pseudo-fermion representation of the local momentsSj = 1

2f
†
j σfj , then the associated

constraintnf (j) = 1 at each site leads to a local SU(2) symmetry [14]

fjσ →
{

eiθfjσ

cosφfjσ + σ sinφf †j−σ .
(10)

The Lagrangian for the f-electrons is

Lf =
∑
j

f̃
†
j

(
∂τ +W · τ

)
f̃j (11)

where the tilde fieldf̃ †j = (f †j↑, fj↓) denotes a Nambu spinor representation of the f-electron
andW is a fluctuating gauge field which imposes the constraint. The SU(2) symmetry
makes it possible to simultaneously factorizeHI in both particle–hole and Cooper channels
[16]:

HI =
∑
0,j

{[
f̃
†
j V0j ψ̃0j + hc

]+ 1

2J0
Tr[V0†j V0j ]

}
(12)

whereψ̃†0j = (ψ†0j↑, ψ0j↓). The field

V0j = i

[
V 1

−1∗ V ∗

]0
j

(13)

is directly proportional to an SU(2) matrix.
The essential observation is that the onsite product of the two fieldsM(xj ) = V1†

j V2
j is

invariant under local SU(2) gauge transformationsV0j → gjV0j . M(x) therefore represents
a physicalquantity. Careful re-expression of this matrix in an operator form reveals that
its components are directly related to the composite order that develops between the two
channels 〈[

F(x) 3(x)

−3†(x) F †(x)

]〉
= V

1†(x)V2(x)

J1J2
(14)

whereF(xj ) = ψ†1jσψ2j ·Sj represents composite charge order and3(x) is the composite
pair density. The product form of this result establishes that composite order is a
consequence of interference between the Kondo effect in the two channels.

By removing the site indices on the hybridization and constraint field we obtain the
mean-field Hamiltonian

HMF =
∑
k

(c̃
†
k, f̃

†
k)

[
εkτ3 V†k
Vk W · τ

](
c̃k
f̃k

)
(15)

where the one-band character of the model forces the order parameter for each channel
to enter into the hybridizationVk = V181k + V282k. This provides the origin of the
interference between the two channels. Choosing the gauge whereV1 = iv11, then a stable
composite-paired solution emerges withV2 = v2τ1 andW = (0, 0, λ). After some work,
we find that the eigenvalue spectrum of (15) has two branches, where

Ek± =
√
αk ± (α2

k − γ 2
k )

1
2 (16)



Letter to the Editor L243

whereαk = V 2
k+ + 1

2(λ
2 + ε2

k), γ
2
k = [λεk − V 2

k−]2 + (2v1kv2k)
2 and we have defined

v0k = v080k, V 2
k± = v2

1k ± v2
2k. The requirement that the free energy per site

F = −2T
∑
k,α=±

ln

[
2 cosh(βEkα/2)

]
+
∑
0=1,2

(v0)
2

J0
(17)

is stationary with respect to variations inv2, v1 andλ gives rise to three mean-field equations.
Two classes of solution exist:

• Normal state: v1 or v2 = 0. Two normal state phases exist corresponding to a single-
channel Kondo effect in channel one or two. The Fermi surface geometries of the two
phases are topologically distinct, and at half filling these phases evolve into two different
Kondo insulating phases.

• Composite paired state: v1v2 > 0. When channel conservation is absent, a Kondo effect
in both channels leads to a paired state with an anisotropic heavy-electron gap function
1k ∼

√
TK1TK28k18k2.

Settingv2 = 0+ in the mean-field equations, the transition from the one-channel Fermi
liquid into the composite paired state is given byJ2χ3(Tc) = 1 where

χ3(T ) =
∑
kα

tanh

(
Ekα

2T

)
(8k2)

2

2Ekα

[
1+ (λ− εk)2

(E2
kα − E2

k−α)

]
(18)

is the composite pair susceptibility. There are two important contributions to this integral:
a high energy, single-ion part whereEk+ ∼ |εk| � TK1 and a low energy ‘Fermi surface’
contribution where the term in square brackets is proportional to(81k)

2, so that

χ3 ≈ 2N(0)

[
〈82

2k〉ln
(
D

TK1

)
+ 〈82

1k8
2
2k〉ln

(
TK1

T

)]
(19)

where 〈. . .〉 denotes an angular average,D andN(0) are the conduction electron band-
width and density of states respectively. Notice how the second interference term largely
compensates for the single-ion cut-off (TK1) in the first term. A composite pair instability
occurs at

Tc ∼ D(D/TK1)
ζ−1 exp

[
− 1

2〈82
1k8

2
2k〉N(0)J2

]
(20)

whereζ = 〈82
2k〉/〈(81k82k)

2〉.
To illustrate this conclusion we have used a two-dimensional model where the local

moments couple to a tight-binding lattice of conduction electrons via an ‘s’ and ‘d’ channel:

81k = 1 82k = [cos(kx)− cos(ky)]. (21)

Figure 3 shows the phase diagram computed using the mean-field equations. WhenJ2 ∼ J1

the mean-field transition temperature for composite order is comparable with the single-site
Kondo temperature.

An interesting prediction of the theory is the existence of a second-order
superconducting–insulating transition. At half-filling the normal state is a Kondo insulating
ground-state in channel one or two. Beyond a critical valueJ2 > J ∗2 , a Kondo insulator in
channel one becomes unstable with respect to a composite-paired state. Even though this
phase forms in the complete absence of a Fermi surface, the superfluid stiffness

ρs =
(

2

d

)∑
k

(
v1v2

Vk+

)2
(81k∇82k −82k∇81k)

2

[(εk/2)2+ V 2
k+]

1
2

(22)
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Figure 3. Phase diagram for a two-channel Kondo lattice with ‘s’ and ‘d wave’ screening
channels. Composite pairing develops in shaded region.

K.I K.IΛ>0

2
*J J 2* *

Figure 4. Phase diagram for a two-channel Kondo insulator. ‘K.I 1’ and ‘K.I 2’ denote Kondo
insulating phases in channel one and two respectively. In the intermediate gapless phase both
channels participate coherently in the composite pairing process.

is positive (whered is the dimensionality). At a higher valueJ2 > J ∗∗2 , the Kondo effect
in channel one is finally suppressed, forming a second Kondo insulating state. Figure 4
shows how the Kondo-insulating ground-states become unstable to a composite paired state
at strong coupling.

In closing, it is perhaps instructive to contrast composite and magnetically mediated
pairing [17, 18]. The latter is maximized in the vicinity of an anti-ferromagnetic quantum-
critical point. By contrast, the composite pairing described here is driven by a constructive
interference between two rival normal phases, and requires no fine tuning. The gap
function is determined by an interference product of two Wannier functions,1k ∝ 81k82k,
predicting an intimate relationship between the gap symmetry and local quantum chemistry.
When the primary spin exchange occurs in the f-channel, a small exchange coupling to
a p-channel will develop a composite paired state with a gap symmetry8f × 8p. For
transition metal systems, admixture between a primary d-channel and a secondary s-channel
will provide a gap with d-symmetry.

We should like to thank N d’Abrumenil, R Ramazashvili and A Finkelstein for helpful
comments relating to this work. Research was supported in part by the National Science
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